

AIRS Mid-Tropospheric CO₂ Climatology Product

Thomas S. Pagano, Ed Olsen, Hai Nguyen, Alex Ruzmaikin

California Institute of Technology, Jet Propulsion Laboratory 4800 Oak Grove Drive, Pasadena, CA, USA 91109

Xun Jiang

University of Houston, Houston Texas

April 21, 2015

tpagano@jpl.nasa.gov, (818) 393-3917, http://airs.jpl.nasa.gov

© 2015 California Institute of Technology. Government sponsorship acknowledged.

Agenda

- AIRS Mid-tropospheric CO₂ climatology dataset created
- Product uncertainties included
- Product validation underway
 - This talk examines the seasonal cycle
 - Results: NH Dampening and Phase Lag, SH Reversal
 - T. Pagano, E. Olsen, H. Nguyen, A. Ruzmaikin, X. Jiang, L. Perkins, "Global variability of midtropospheric carbon dioxide as measured by the Atmospheric Infrared Sounder," J. Appl. Remote Sens., 8(1), 084984 (2014). doi:10.1117/1.JRS.8.084984.
- Conclusions

AIRS Retrieves CO₂ in the Mid to Upper Troposphere

AIRS Sensitivity

 Peak sensitivity altitude varies slightly with latitude and season:

Tropics: 285 hPaPoles: 425 hPa

Width at half-maximum is
 ~ 400 hPa, spanning:

Tropics: 120 hPa to 515 hPaPoles: 235 hPa to 640 hPa

- Tails of averaging kernels intrude into stratosphere, where air is older than in troposphere by an amount that varies with latitude (~ 1 yr in tropics; ~5 yrs at poles).
- Impact: ~3 ppm increase in retrieved CO₂ near the poles if correction is applied.

AIRS Mid-Tropospheric CO₂ Climatologies

AIRS CO₂ Climatology: Average of AIRS L3 Monthly CO₂ over years 2003-2010

 $D\downarrow ijm = \sum k=1.78 \text{ } \text{ } \text{ } N\downarrow ijkm \text{ } D\downarrow ijkm \text{ } /\sum k$

Simple Monthly Climatology

- V5 L3 Monthly CO₂ for Years: 2003-2010
- QC on -9999
- Detrend CO₂ using linear fit to all years for each grid cell
- Average CO₂ values for individual months (e.g. all January's. Gives 12 files)
- Preserve Grid of input L3

Pagano, T. S., Olsen, E. T., Chahine, M. T., Ruzmaikin, A., Nguyen, H., Jiang, X., "

Monthly representations of mid-tropospheric carbon dioxide from the Atmospheric Infrared Sounder," Proc. SPIE 8158-11, San Diego, CA (2011).

Climatologies include combined statistics for each month

Standard deviation and number of samples for each month from all years is combined into single value

July Climatology Statistics

- a) Uncertainty, σ_{ij7}
- b) Number of Data Points included in the mean, N_{ii7}

$$N\downarrow ijm = \sum k=1.78 \text{ } N\downarrow ijkm$$

Zonal average of AIRS CO₂ climatologies show many features

Product Validation: Seasonal Cycle Comparison Datasets

Comparison Product	Instrument	Level	Source
Mid-Trop CO ₂ , T _{500mb} , T _{surf}	AIRS	L3	GES/DISC
Surface CO ₂	In-Situ/Flask	N/A	NOAA ESRL*
EVI, T _{surf} (for GPP)	MODIS	L3	GES/DISC

AIRS Mid-Trop and Surface Temperatures

Mid-Tropospheric Temperatures (per CO2) for January from AIRS

87 NOAA CO₂ Surface Sites Worldwide

GPP from MODIS EVI and T_{surf}

*Conway, T.J., P.M. Lang, and K.A. Masarie (2011), Atmospheric Carbon Dioxide Dry Air Mole Fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, 1968-2010, Version: 2011-10-14, Path: htp://ftp.cmdl.noaa.gov/ccg/co2/flask/event/.

Seasonal Cycle Revealed in Zonal Averages

Monthly climatology made for each product by combining L3 from 2003-2010

Zonal averages made of each climatology in 20 degree bins

AIRS Mid-Trop CO₂ Climatology Seasonal Cycle Amplitude

Mid-tropo CO₂ NH: Damped seasonal amplitude compared to surface

SH: Higher seasonal amplitude. Interhemispheric transport?

AIRS Mid-Trop CO₂ Climatology Seasonal Cycle Phase

Mid-tropo CO₂ NH: Lags the surface due to mixing

SH: Leads the surface due to interzonal transport?

AIRS CO₂ Shows Significant Influence of Surface in addition to Atmospheric Transport

High Correlation of CO₂ and GPP for July in NH Boreal Forests

Summary and Future Work

Summary

- AIRS mid-tropospheric CO₂ monthly climatology generated
- Recently reprocessed for 2003-2014
- Climatology available at co2.jpl.nasa.gov this summer
- Distinctive seasonal cycle seen in the mid-tropospheric CO₂ from AIRS
 - Amplitude damped in NH relative to surface flask measurements
 - · Phase lag relative to surface flask in NH
 - Phase preceeds, and amplitude higher than surface in SH
- Influence of boreal forest drawdown in summer seen in spatial variability of AIRS mid-tropospheric CO2

Future work

- Climatology with Version 6 to increase yield and accuracy
- Acknowledgements
 - Dr. Mous Chahine (CO2 VPD Algorithm, AIRS Science Team Lead to 2011)
 - Dr. Ramesh Kakar (Aqua Program Scientist)

AIRS CO₂ Climatology Animation

